![16. 평면 표면에서의 근축 굴절 (1)](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FbcAOIY%2Fbtsz7RtRiai%2FtZ4lahOqHy80UZLwMuKIEK%2Fimg.png)
각이 매우 작을 때는 몇 도로 나타내는 각들의 비율과 각의 sine값의 비율 이나 각의 tangent의 비율은 거의 같다. 근축광선은 면에 세운 법선 근처의 작은 영역 범위 내로 입사되는 광선이다. 근축광선들의 입사각과 굴절각은 작다. 그들의 근축 비율들은 \( \frac{\tan(\alpha)}{\tan(\alpha')} = \frac{\sin(\alpha)}{\sin(\alpha')} = \frac{\alpha}{\alpha'} \) 이다. 각들의 sine 부호를 소거함으로서 근축광선에 대한 Snell의 법칙을 구할 수 있다. \( n \sin(\alpha) = n' \sin(\alpha') \gg n \alpha = n' \alpha' \) \( \frac{\alpha}{\alpha'} = \fra..
![14. 내부 전반사와 임계각](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FZu193%2Fbtsz87pCPZR%2F5MPux2BIr9cnYkALk8EEPk%2Fimg.png)
입사 매질의 굴절률이 투과된 매질의 굴절률보다 큰 값(ni > nt)을 갖는 두 개의 다른 매질들 사이의 경계에서 광선이 투과 및 굴절 되는 경우를 생각해 보자. 아울러 입사각 \( \theta_i \)를 서서히 증가시켜 변화를 주어 보자. 아래 그림에서 보는 바와 같이 입사각의 크기가 임계각 \( \theta_c \)라고 불리는 어떤 각이 되면 투과된 광선의 투과 각은 \( \pi/2 \)(또는 90deg)가 된다. 이 관계를 수식으로 전개 해 보면 먼저 Snell의 법칙에 따라, \( n_i \sin(\theta_i) = n_i \sin(\theta_c) = n_t \sin(\pi/2) = n_t \) \( \sin(\theta_c) = \frac{n_t}{n_i} \) 임계각 (Critical An..