![10. 고조파 발생 (Harmonic Generation)](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fvf6ge%2FbtsCq72ECrM%2F6zy70igKwHCCJrMNo7xqtK%2Fimg.jpg)
고조파 발생과 광 파라메트릭 발진 주파수가 다른 전자장 사이에서 서로 에너지 교환이 가능하다는 현상을 응용하는 것이다. 비선형 매질에서 전자파의 전파에 대한 방정식(맥스웰 방정식) : (무손실 비도전성 매질에서 자기적으로 선형이고 등방성이며, μ=μo인 경우) 가 된다. 전기분극 P를 선형 부분 PL=εoχLE와 비선형 부분 PNL로 나누고, ε=εo(1+χL)을 이용하면 (전기분극 P를 선형 부분 PL=εoχLE와 비선형 부분 PNL로 나누고, ε=εo(1+χL)을 이용) 참고로 더 나아가서 이를 맥스웰 방정식에 다시 대힙하여 회전(curl)을 취하고 자기장 성분 H를 소거하면 파동방정식을 얻게 된다. 2차 비선형효과에 의한 고조파 발생 원리 제2고조파 발생(second harmonic generati..
![9. 레이저 제어기술, Q-스위치](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fpnf6g%2FbtsCoBKaoxc%2FZY7WZkvF48C5aCnJKaD9bK%2Fimg.jpg)
레이저에는 많은 종류가 있고, 그 특성도 각각 다르다는 것은 포스팅을 본 여러분들은 알고 있을 것이다. 각종 레이저 응용에서 중요하게 작용하는 것이 레이저 제어기술이다. 레이저의 제어를 어떻게 하는가는 레이저 응용면에서 핵심을 이루는 경우가 많다. 즉 각종 레이저를 어떤 분야에 응용하더라도 레이저광의 강도, 파장, 위상, 편광, 편향 및 변조 등의 제어는 빼어 놓을 수 없는 기술이다. 레이저광의 제어는 레이저 발진기 내부에서 레이저광의 강도, 파장 및 발진형태 등을 직접 제어하는 방법과 레이저 발진기에서 방사되는 레이저광을 외부에서 제어하는 방법으로 분류할 수 있다. 이제 그 제어방법과 특성 등에 대하여 알아보자! Q-스위치 레이저매질을 여기시키면 반전분포가 일어나고, 그 양은 점차 증가한다. 그러나 이..
![7. 레이저 발진조건](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fcpdagn%2FbtsCtqfSW27%2FqZugfrD7H5PsWyHOuNeL0k%2Fimg.jpg)
레이저발진 반전분포상태인 원자계의 매질 안에서는 천이의 스펙트럼 폭에 해당하는 주파수의 전자파가 증폭된다는 것을 알았다. 다음으로 이 같은 레이저매질이 광공진기 안에 있을 경우를 생각해 보자. 전자파가 두 개의 반사거울 사이를 왕복하면서 레이저매질을 통과하기 때문에 증폭작용이 일어난다. 증폭이 반사거울의 불완전한 반사나 레이저매질 안에서 산란으로 생기는 손실을 상회할 경우, 공진기 안에 축적되는 방사에너지는 시간이 경과하면서 증가되어 간다. 이 때문에 이득의 포화효과로 증폭률이 감소하고, 발진준위가 높아지며, 결국 포화된 이득이 손실과 같아지는 점에 이르게 된다. 이 점에서는 이득에서 손실을 공제한 실질적인 이득인자는 1이 되고, 전자파의 강도는 증가하지 않게 된다. 다시 말해, 정상 발진상태가 되는 것..
![5. 3준위 및 4준위 레이저 비율방정식](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FAFhbe%2FbtsCoHpW59q%2Fokq4d1yvd4f1IioWxXXwok%2Fimg.png)
4준위 레이저 반전분포를 실현시키면 레이저 증폭작용이 일어나는 것은 당연하다고 할 수 있다. 문제는 어떻게 입자수분포를 반전시키는가 하는 것이다. 실제 레이저에서 잘 이용되는 것은 3준위계 또는 4준위계의 완화 시간차를 이용하는 방법이다. 우측의 그림은 이상적인 3준위 레이저의 에너지준위를 나타낸 것이다. 레이저의 경우, 각 준위 사이에 생기는 에너지차는 열에너지에 비해 아주 크기 때문에 열평형상태에서 거의 모든 원자는 바닥준위인 준위 1에 있다. 이와 같은 원자의 집단에 외부에서 ν31=(E3-E1)∕h에 가까운 주파수의 강력한 광을 입사시켜 바닥준위의 원자를 준위 3으로 여기시킨다. 이것에 의한 유도방출확률 W31과 유도흡수확률 W13은 같기 때문에, 이를 Wi라 한다. 준위 3과 1의 원자수를 N3..
![3. 광의 흡수와 방사 그리고 유도방출](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FmzUDP%2FbtsCt5iecns%2F9e2jX8EKEtfqkMqbHNWqeK%2Fimg.jpg)
광의 흡수 에너지준위 E1과 E2를 갖는 원자에 외부에서 진동수 ν의 전자파를 입사시킬 때, 식 (2-2)의 관계가 성립한다면, 원자는 진동수 ν의 광에 공진하여 효율 좋게 그 광의 에너지를 흡수하고 에너지준위 E1에서 E2로 여기된다. 이같이 광의 흡수는 원자와 공명하는 특정의 파장에서 일어나는 것이다. 이 때의 전자파상태를 에너지로 표현하여 E2-E1 =hv 로 쓰면, hν는 두 에너지준위 사이의 차 E2-E1과 같은 크기가 된다. 이 hν의 에너지를 갖는 입자를 광자라 하는데, 광이 에너지를 갖는 양자역학적인 입자라고 생각하게 만든 것이다. 그러므로 아래에 표시된 것처럼 광은 광자의 집합체가 되고, 광의 흡수는 광자의 흡수라고 한다. 들뜬 에너지준위 E2에 있는 원자는 일반적으로 불안정하고, 짧은 ..