10. EUV 개발 역사 (10) - LPP 광원의 서막
Semiconductor/EUV lithography2023. 10. 7. 00:3310. EUV 개발 역사 (10) - LPP 광원의 서막

Laser-produced plasma light sources are especially powerful, precise, and controllable. Courtesy of Adlyte Inc. EUV 광원 개발을 위해 싱크로트론 방사의 대안으로 고려된 것은 바로 LPP, 레이저 생성 플라즈마입니다. LPP는 고강도 레이저 빔이 플라즈마를 생성하기 위해 주로 금속인 대상 물질에 초점을 맞추는 일종의 플라즈마 소스입니다. 플라즈마 내의 높은 온도와 압력은 EUV 빛을 포함한 빛의 방출로 이어집니다. EUV 광원 생산에 LPP를 사용하면 몇 가지 이점이 있습니다. 가장 큰 장점은 소형의 상대적으로 저렴한 장비를 사용하여 LPP를 생성할 수 있어 이 기술을 상용 응용 프로그램에 보다 쉽게 접근할 수 있다..

9. EUV 개발 역사 (9) - 싱크로트론 방사광
Semiconductor/EUV lithography2023. 10. 6. 00:279. EUV 개발 역사 (9) - 싱크로트론 방사광

여러번 더 강조해도 모자르지만... EUV 광원 개발 여정의 핵심은 기술력 향상입니다. 스마트폰에서 슈퍼컴퓨터에 이르기까지 실리콘 칩은 현대 디지털 장치의 기반입니다. 더 작고 더 정밀한 회로를 만드는 능력은 더 강력하고 효율적인 장치로 직접 변환됩니다. 따라서 EUV 광원 기술은 곧 더 작은 트랜지스터 생산과 직결되어있으며 디지털 미래의 최전선에 있으며 성공적인 개발은 기술 발전에 매우 중요합니다. EUV 광원 개발을 위한 초기 노력은 주로 싱크로트론 방사를 활용하는 데 중점을 두었습니다. 낮은 변환 효율과 광범위한 잔해 완화의 필요성에도 불구하고, 이러한 소스는 EUVL의 중요한 부분이었습니다. 고려된 주요 요인은 필요한 출, 평균 전력 요구량 및 이러한 소스를 다른 EUV 애플리케이션에서 사용할 수..

7. EUV 개발 역사 (7) - 다층 박막의 서막
Semiconductor/EUV lithography2023. 10. 4. 00:187. EUV 개발 역사 (7) - 다층 박막의 서막

이번 포스팅에서는 미러의 제조 방법과 개발 역사에 이어 미러에 적용되는 EUV 전용 고반사 다층박막에 대해 소개하고자 합니다. 먼저 EUV에 대해 간략하게 설명하자면...(다들 아시겠지만)EUVL은 자외선 범위에서 매우 짧은 파장의 빛을 사용하여 실리콘 웨이퍼에 패턴을 그리는 것을 말합니다. 쉽게 말해 웨이퍼라는 도화지 위해 그림 그리는 것이라고 생각해주세요 EUVL은 매우 짧은 자외선 파장을 사용하여 실리콘 웨이퍼에 복잡한 패턴을 생성합니다. 참고로 짧은 파장을 이용하여 패턴을 형성할 경우 더 세밀한 패턴을 제작할 수 있고 반도체의 성능은 더 좋아집니다! 그러나 EUVL의 가장 큰 난제는 빛의 흡수에 있으며, 광의 전달이 가장 큰 고민거리였습니다. 결국 반사광학계의 차용을 통해서 EUV 광을 전달 할 ..

5. EUV 개발 역사 (5) - 비구면 거울의 서막
Semiconductor/EUV lithography2023. 10. 2. 00:095. EUV 개발 역사 (5) - 비구면 거울의 서막

위 그림은 렌즈이지만, 비구면에 초점을 맞춰서 봐주시기 바랍니다. 이전 포스팅에서 이어지는 설명을 담은 포스팅입니다. 바로 미러, 특히 EUV 비구면 미러의 제작 및 개발과정에 관한 포스팅인데요. 자 알아보시죠! EUV은 흡수가 아주 잘되는 빛이기에 렌즈를 사용할 수 없고 반사를 이용해서 광을 웨이퍼에 전달해야합니다. 즉, EUV 미러죠! 하지만 거울 종류에도 여러가지가 있겠죠? 그중에서 비구면 거울을 사용합니다. 비구면 거울이 무엇일까요? 간단히 말해서 비구면 거울은 단순히 구부러진 모양이 아니라 더 복잡한 모양을 가진 특수 설계된 거울입니다. 이 복잡한 모양은 EUVL에 중요한 빛을 더 정확하게 집중시키는 데 도움이 됩니다. 1980년대 후반에 EUV 이미징 시스템용 미러를 만드는 것은 마치 벅찬 산..

4. EUV 개발 역사 (4) - 광학계 거울 구성
Semiconductor/EUV lithography2023. 10. 1. 00:054. EUV 개발 역사 (4) - 광학계 거울 구성

Aspherical-Mirror Imaging 이전 포스팅에 이어서 설명을 계속 하겠습니다. 하지만 구면거울이 가지는 수차로 인해 제조공정의 한계가 명백해지면서 비구면거울로의 전환이 불가피해졌습니다. 비구면 거울은 구면 거울과 달리 구면 수차, 즉 중심이 아닌 가장자리 근처에서 거울에 닿는 광선의 굴절 증가로 인해 발생하는 왜곡이 발생하지 않습니다. 이 속성은 EUVL과 같이 높은 정밀도가 필요한 응용 분야에서 매우 중요합니다. 1989년 NTT에서 2개 비구면 미러 이미징 시스템을 개발했습니다. 이 시스템은 리소그래피 노광 설비에 대한 세 가지 최소 요구 사항을 충족했습니다. 이미지 측면에서 텔레센트릭: 시스템은 주광선(조리개 중심을 통과하는 물체 공간의 축외 지점에서 나오는 광선)이 이미지 측면에 평..

image